图片名称

40009 63336


31

2019

-

10

激光焊接技术可以大幅度降低汽车制造成本!


激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。

 

气体激光焊接降低汽车制造成本(氦气、氩气)——氦保护气体带来最小的平均蒸汽粒子大小。这说明了对激光焊接来说,纯氦是控制粒子大小的最佳选择。氦气与氩气相比,确实有比较高的电离率和较低的等离子体形成电压,但是它的分子重量较小。因此,氦保护气需要较大的流速,以保证有效的将激光光束路径上的金属蒸汽排出。由于氦气的单位成本高于氩气,因此,这就增加了焊接过程中平均每英尺成本。

 

为了优化保护气体以实现抑制等离子体,排出蒸汽粒子以及降低单位成本,我们考虑使用高达40-50%的氩气混合气体。比重越高,混合气体所需要用来排出蒸汽粒子的流速就越小。混合气体还在焊接池固化过程中提供了更长时间的惰性气氛,从而使焊接速度更大。它还降低了捕获气体的量,从而减轻了由于多孔性而带来的报废率。其次,固化率的降低促进了晶粒的生长和内部应力的减轻,这就增加了疲劳强度。由于纵横比(焊缝深度/宽度)较高和随后的应力所产生的焊接裂缝都几乎被清除了。

激光焊接

激光焊接

在混合气体中,适当的添加少量的二氧化碳或氧气,或将它们作为二次保护气体,能够进一步的提高焊珠的性能。氦氩混合气体易于产生更高的电弧电压,相应的得到的焊珠外形更宽,电弧稳定性也更高。因此,可以加入二氧化碳来稳定传递和收缩电弧。在一些情况下,可以加入少量氧气来实现优质的电弧稳定性,同时在焊接边缘实现更好的连接(浸湿)。与二氧化碳混合气体相比,氧气由于电离率较低,热导率性能较高,易于提供宽而浅的穿透分布。

 

针对所需质量和生产率标准的混合气体被最终确定以后,还需要考虑如何把它们经济的运送到使用地点。用户可以通过在生产现场混合这些保护气体,利用低成本的液态氩供应方式。

氩气可以通过液态氩瓶来经济的运送,氩气的月消耗量更大的话可以使用批量供给来实现成本水平的优化。分析中还需要考虑到填充损耗,每月设备费,成批供给的合同限制,以及运费等等因素。另一方面,氦气一般是通过高压瓶或者钢瓶组来供给的。现场的混合需要一个混合系统,它能够准确的调节从0-100%的微小成分。

 

总的质量系统可以通过在混合器的出口放置一个分析仪来实现监控,一旦混合比超出误差范围,就会报警。已有软件和报警系统可以将这种信息传至桌面电脑,或者通过传真或电子邮件送至更远的地方。合理设计的混合激光气体传送系统使用户能够实现更高的焊接速度,相应的得到更高的生产率。关注保护气体的参数,如类型,流量,与冲击角度,将提高焊接质量,降低光束吸收和散射效果。

气体,激光焊接,工业气体,混合气,汽车制造,氦气,氩气,焊接混合气,激光气,高纯气体